Power fluctuations in beta and gamma frequencies in rat globus pallidus: association with specific phases of slow oscillations and differential modulation by dopamine D1 and D2 receptors.
نویسندگان
چکیده
Modulation of oscillatory activity through basal ganglia-cortical loops in specific frequency bands is thought to reflect specific functional states of neural networks. A specific negative correlation between beta and gamma sub-bands has been demonstrated in human basal ganglia and may be key for normal basal ganglia function. However, these studies were limited to Parkinson's disease patients. To confirm that this interaction is a feature of normal basal ganglia, we recorded local field potential (LFP) from electrodes in globus pallidus (GP) of intact rats. We found significant negative correlation between specific frequencies within gamma (≈ 60 Hz) and beta (≈ 14 Hz) bands. Furthermore, we show that fluctuations in power at these frequencies are differentially nested within slow (≈ 3 Hz) oscillations in the delta band, showing maximum power at distinct and different phases of delta. These results suggest a hierarchical organization of LFP frequencies in the rat GP, in which a low-frequency signal in the basal ganglia can predict the timing and interaction of power fluctuations across higher frequencies. Finally, we found that dopamine D(1) and D(2) receptor antagonists differentially affected power in gamma and beta bands and also had different effects on correlation between them and the nesting within delta, indicating an important role for endogenous dopamine acting on direct and indirect pathway neurons in the maintenance of the hierarchical organization of frequency bands. Disruption of this hierarchical organization and subsequent disordered beta-gamma balance in basal ganglia disorders such as Parkinson's disease may be important in the pathogenesis of their symptoms.
منابع مشابه
Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 and D2 dopamine receptors.
The firing rates of many basal ganglia neurons recorded in awake rats oscillate at seconds-to-minutes time scales, and the D1/D2 agonist apomorphine has been shown to robustly modulate these oscillations. The use of selective D1 and D2 antagonists suggested that both these receptor subfamilies are involved in apomorphine's effects. In the present study, spectral analysis revealed that baseline ...
متن کاملLateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area
Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...
متن کاملSensitivity change of dopamine receptors in hippocampus (CA1) and its effect on morphine-induced condition place preference
In the present study, the effects of intra-cerebral hippocampus (CA1) injections of apomorphine D1, D2-like receptors agonists on morphine-induced place preference in male Wistar rats have been investigated. Subcutaneous administration of different dose of morphine sulphate (1, 3, 6 and 9 mg/kg) produced a dose-dependent conditioned place preference (CPP). Intra-cerebral hippocampus (CA1) admin...
متن کاملSensitivity change of dopamine receptors in hippocampus (CA1) and its effect on morphine-induced condition place preference
In the present study, the effects of intra-cerebral hippocampus (CA1) injections of apomorphine D1, D2-like receptors agonists on morphine-induced place preference in male Wistar rats have been investigated. Subcutaneous administration of different dose of morphine sulphate (1, 3, 6 and 9 mg/kg) produced a dose-dependent conditioned place preference (CPP). Intra-cerebral hippocampus (CA1) admin...
متن کاملForebrain Dopamine Receptors in Cognitive, Memory and Learning Processes
Neurons that utilize dopamine (DA) as a neurotransmitter have attracted great interest because of their involvement in the behavioral, endocrine and descending control of major brain functions. DA is known to exert its physiological effects on target neurons through D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptor subtypes. To better understand the DA modulation of brain functions, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 16 شماره
صفحات -
تاریخ انتشار 2011